Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Sci Immunol ; 6(66): eabf1152, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1583226

ABSTRACT

Saponins are potent and safe vaccine adjuvants, but their mechanisms of action remain incompletely understood. Here, we explored the properties of several saponin formulations, including immune-stimulatory complexes (ISCOMs) formed by the self-assembly of saponin and phospholipids in the absence or presence of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). We found that MPLA self-assembles with saponins to form particles physically resembling ISCOMs, which we termed saponin/MPLA nanoparticles (SMNP). Saponin-containing adjuvants exhibited distinctive mechanisms of action, altering lymph flow in a mast cell­dependent manner and promoting antigen entry into draining lymph nodes. SMNP was particularly effective, exhibiting even greater potency than the compositionally related adjuvant AS01B in mice, and primed robust germinal center B cell, TFH, and HIV tier 2 neutralizing antibodies in nonhuman primates. Together, these findings shed new light on mechanisms by which saponin adjuvants act to promote the immune response and suggest that SMNP may be a promising adjuvant in the setting of HIV, SARS-CoV-2, and other pathogens.


Subject(s)
Adaptive Immunity/drug effects , Adjuvants, Immunologic/pharmacology , Lymph/drug effects , Saponins/pharmacology , Toll-Like Receptors/agonists , Animals , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Lymph/physiology , Macaca mulatta , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles , Rats , Rats, Wistar
2.
Science ; 371(6529)2021 02 05.
Article in English | MEDLINE | ID: covidwho-1309798

ABSTRACT

Understanding immune memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for improving diagnostics and vaccines and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥6 months after infection. Immunoglobulin G (IgG) to the spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month after symptom onset. SARS-CoV-2-specific CD4+ T cells and CD8+ T cells declined with a half-life of 3 to 5 months. By studying antibody, memory B cell, CD4+ T cell, and CD8+ T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Immunologic Memory , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , United States , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL